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The birds-eye view
• This talk is about gauge-fermion systems with fermions 

charged under multiple different representations of the 
gauge group: 

• These systems are possibly relevant for phenomenology and 
definitely interesting from a quantum field theory perspective 

• My colleagues and I are conducting lattice simulations of 
one such system

“L = F 2 +
X

r

 ̄rDr r”
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Motivation
• Experimentally, physics exists beyond the Standard Model: 

‣ Neutrino masses (if SM is an effective theory, still need a UV completion) 

‣ Dark matter 

‣ Dark energy 

‣ (Quantum gravity?) 

• Theoretically, the Standard Model is not entirely satisfactory 
‣ What is the origin of the Higgs potential? Why is the Higgs mass 125 GeV? 

‣ What is the origin of observed hierarchies? For instance, why is mt / mu/d ~ 10,000? 

• Theoretically, our understanding of strongly coupled QFT remains 
incomplete.  

‣ In particular, which mechanisms exist for mass generation?
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Section 1: 
Phenomenology
More: “What can the lattice say about certain models?” 
Less: “How viable are these models?”
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Compositeness 
Strongly coupled BSM Models
• Besides the Higgs, the only scalar particles we know about in nature 

arise as bound states of a strongly interacting sector — QCD 

• Example: 𝜎 = f0(500), f0(980), etc… 

• The SM Higgs is a scalar. Maybe the SM Higgs comes from a new 
strong sector in the UV? 

• From a Wilsonian perspective the Higgs masses is a relevant coupling. 
Does some symmetry protect it from large renormalization effects? 

• In QCD, pions are Goldstone bosons and are protected by shift 
symmetry 

• Maybe the Higgs is a (pseudo-) Goldstone boson?
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Electroweak mass generation  
In strongly coupled BSM models

Suppose a gauge-fermion sector in the UV confines 
and breaks chiral symmetry. If the chiral condensate…

“Technicolor” “Composite Higgs”

✦ No Higgs boson exists 
✦ Higgs emerges from dynamics 

(“dilaton”?) 
✦ Reasonable level of lattice 

investigation to date

… breaks SU(2)L … preserves SU(2)L

✦ Higgs arises as an exact Goldstone 
boson from broken chiral symmetry 

✦ Perturbative SM loops generate the 
Higgs potential and trigger EWSB 

✦ Limited lattice investigation (!)

Today’s focus
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Fermion masses 
via 4-fermion interactions

• Often, Standard Model fermions couple 
quadratically to UV operators in BSM models. 

• Partial compositeness = linear coupling to 
baryon operators in the UV 

‣ Mass mixing yields top quark partners 

‣ Idea: Kaplan D.B., Nucl Phys B365 (1991) 
259-278 

• Realistic implementations are delicate in 
either case and must respect stringent 
constraints from flavor physics  

‣ See Panico, G. and Wulzer, A. “The 
Composite Nambu-Goldstone 
Higgs” (Springer 2016) for some 
references
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The role of the lattice?
• Historically, phenomenology has mostly focused on 

IR descriptions via EFTs 

‣ EFTs are necessary for interpreting potential signals from LHC data 

‣ Results are expressed in terms of (undetermined) low-energy constants 

‣ Computations with UV degrees of freedom are hard by construction, since 
interactions are strong 

➡ The lattice can compute LECs, masses, etc… But it 
needs a UV completion!
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The role of the lattice?
➡ The lattice can compute LECs, masses, etc… But it 

needs a UV completion!

• Ferretti and Karateev (1312.5330) classified 
possible UV completions  

A. Gauge group is anomaly-free 

B. Gauge group contains the SM gauge group + custodial SU(2) 

C. Theory is asymptotically free 

D. Matter fields are fermionic irreps of the gauge group

“Healthy” 
 physical theory

(Sufficient?) Condition for  
partial compositeness
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Ferretti’s Model 
A “minimal” UV continuum theory of partial compositeness 
from (1404.7137)
• SU(4) gauge theory with “multirep" matter content  

• 5 two-index antisymmetric (“sextet”) Majorana fermions

• Equivalent DOF: “2.5 sextet Dirac fermions” 

• Sextet SU(4) is a real representation ≌ to SO(6) 

• 3 fundamental Dirac fermions

• Symmetry breaking: SU(5)/SO(5) in the IR (for sextets) 

• Symmetry breaking pattern different from QCD 

• New territory for lattice simulations

Q = Q

real irrep

complex irrep
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Ferretti’s Model: FAQs
• Why SU(4) gauge theory? 

➡ Maintains asymptotic freedom for the desired fermion content 

• Why sextet fermions? 

➡ Higgs ∈ SU(5)/SO(5) works, is reasonably minimal, and has 
been studied via EFT in the IR. Sextet fermions produce this 
pattern of symmetry breaking. 

• Why the particular global symmetry structure? 

➡ The IR theory must contain the Standard Model + custodial 
SU(2) after SSB GF → HF  in the UV
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Ferretti’s Model 
EWSB via top-driven vacuum misalignment
• 𝜒SB occurs in UV, where the future Higgs begins life as an exact Goldstone boson. 

• Then include perturbative interactions with the Standard Model: 

‣ EW gauge bosons induce a positive potential via the mechanism of “vacuum alignment.” 

✦ The physics is identical to EM mass splittings between pions in QCD. 

✦ These interactions do not trigger EWSB. 

‣ The top quark induces a negative potential. If this effect is large enough, “vacuum 
misalignment” drives the formation of a Higgs VEV and triggers EWSB.

Low-energy constants, 
Calculable on the lattice
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Our lattice deformation 
(What we actually simulate)
• Still SU(4) gauge theory, but modified matter content 

• 2.5 ⟼ 2 Dirac sextet SU(4) fermions 

• 3 ⟼ 2 Dirac fundamental SU(4) fermions 

• Symmetry breaking: SU(4)/SO(4) in the IR (for sextets) 

• Still a rich system for lattice investigation 

• Expected to capture the important qualitative 
features of Ferretti’s model
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Technical specifications
• Multirep MILC code - Y. Shamir 

• Lattice discretization 

• NDS gauge action - T. Degrand, Y. Shamir, and B. Svetitsky (1407.4201) 

• nHYP smearing 

• Clover-improved Wilson fermions, clover coefficient cSW set to unity 

• Gauge generation with hybrid Monte Carlo algorithm 

• Today in this talk: 

• First-ever simulations with simultaneous dynamical fermions in multiple representations (in 
3+1 dim) 

• Preliminary “zero-temperature” meson spectroscopy across dozens of ensembles 

• Highlights from some preliminary work toward the Higgs potential and baryons
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Scale setting: the Wilson Flow 
“Always look at dimensionless ratios”

• We set the scale with the Wilson flow scale, t0 

• Flow the gauge fields in a fictitious 5th 
dimension (e.g., Lüscher: 1006.4518) 

• Consider observables built from the flowed 
field strength to define a reference scale 

• In QCD, √t0 = 0.14 fm with M(Nc=3) = 0.3 

• Large-N: t0 ~ Nc, so take M(Nc=4) = 0.4 

• DeGrand (1701.00793) gives details, 
compares to other scale setting schemes, and 
provides more careful connection to large-N

(m∙a) ×(√t0/a) = dimensionless
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Section 2: 
Meson spectroscopy
“Study the low energy degrees of freedom first.”
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Mesons in Multirep SU(4)
• The meson-like spectrum consists of color-singlet two-fermion 

objects and is mostly like QCD 

• Fundamental mesons — analogous to QCD 

• Sextet mesons —  “mesons = diquarks” in real irreps 

• Scalars, pseudosclars, vectors, pseudovectors, tensors, etc… 

• Key difference — flavor-singlet analogue of the 𝜂’(958) but which 
is an exact Goldstone boson 

• Superposition of fundamental, sextet, and “glue” 

• Tricky to measure directly on the lattice… 

• Nothing more here, but an interesting feature of the model…

=
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Overview of Ensembles 
Pseudoscalar-to-vector mass ratio: MP/MV

• O(40) total ensembles 

• Volumes: 

• Fermion masses mq from the axial 
Ward identity  

• Meson masses from 2-point functions 

• 0.5 ≲ MP/MV ≲ 0.8 

• QCD language: “MP ≳ 450 MeV” 

• Comparable behavior in both fermion 
representations

19

TACo Preliminary



Pseudoscalar masses
• Cancel lattice spacing with 

dimensionless “ratios” using t0 

• Leading-order ChiPT says:  

MP
2 ~m 

• (Plausibly) linear behavior 

• Lattice artifacts? 

• (Clover-improved) Wilson 
fermions are not chiral 

• Some remnant additive 
renormalization? 

➡ Try to model data with EFT: ChiPT

20
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Goldstone bosons and EFT 
(A 5-minute review of ChiPT at NLO)
• Multirep ChiPT worked out to NLO by DeGrand, Golterman, Neil, and Shamir in 

1605.07738 

• Schematically similar to single-rep ChiPT with analytic terms and chiral 
logarithms 

• Wilson ChiPT at NLO suggests (MP
2 t0) and (FP√t0) also depend explicitly on the 

lattice spacing through (ma) and (a/√t0) 

• Work within some power-counting scheme, e.g., “p2 ~ a ~ m” 

• Coefficients involving the lattice spacing are lattice artifacts

+ += + . . .

Analytic Chiral logarithms21



Goldstone bosons and EFT 
(A 5-minute review of ChiPT at NLO)

+ += + . . .

Analytic Chiral logarithms

M𝜋2 vs mq F𝜋 vs mq
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Goldstone bosons on the lattice: MP
2

Fundamental Sextet

0.02 0.02
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Goldstone bosons on the lattice: MP
2

Fundamental Sextet

0.02 0.02
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Goldstone bosons on the lattice: FP

Fundamental Sextet
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Goldstone bosons on the lattice: FP

Fundamental Sextet
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The Goldstone bosons on the lattice
Fundamental Sextet

Masses 
MP2

Decay  
constant 

FP
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Scaling relations and “large-N” 
An interlude Usual large-N story for 

fundamental fermions

Suggestive (but heuristic) 
generalization to other repsIrrep dim(r) N≫1 N=4

F N N 4

AS2 (N2-1)/2 N2/2 8

➡ The lattice tests these rough arguments non-perturbatively
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Condensates
• Direct measurement of chiral 

condensates is tricky  

• But ChiPT predicts them!

Measured 
quantities

Passage to 
chiral limit

LECs, from  
ChiPT analysis

29
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And hot off the press… 
1:51 PM, 27 July 2017
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“Slope” of MP2 Decay constants
From a novel 

“multirep” chiral log 



Vector mesons
• Measure masses and decay constants, just as for 

the pseudoscalar 

• Use (ChiPT-inspired) empirical functions to model 
measurements, estimate lattice artifacts 

• Interesting for phenomenology, since vector 
resonances are often the target of collider searches 

• Vector information is most interesting when 
combined with data from the Goldstone sector
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Decay constants 
FV/FP in a fixed representation

• A priori, FV and FP are unrelated 

• KSRF (1966) related FV and FP using current 
algebra and vector meson dominance: 

• Vector meson dominance is an uncontrolled 
but enlightening and physically motivated 
approximation 

• QCD experiment:  

FV/FP ~ 216 MeV/130 MeV ~1.66 

• Success is comparable to that of QCD 

• Both representations are comparable  

FV =
p
2FP

✦ K. Kawarabayashi and M. Suzuki, Phys. Rev. Lett. 16, 255 (1966)
✦ Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071 (1966)
✦ KSRF away from QCD in a different BSM model: 1601.04027
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• KSRF (1966) also 
predict the coupling 
strength: 

• This coupling allows 
for tree-level 
estimation of the 
vector width:

Decay widths via KSRF

Polarization average 
+ Phase space {{

33
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Decay widths via KSRF 
• KSRF prediction: 

• Broad states, although likely 
narrower than 𝜌(770) in QCD 

‣ 𝛤V6/MV6 ~0.1 

‣ 𝛤V4/MV4 ~0.2 

• Assumes MP≪MV, a good 
approximation is BSM models 
where P is the Higgs. 
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Section 3: 
The Higgs potential
Mostly highlights from pilot lattice study 1606.02695 
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The Higgs Potential
• The Higgs begins life as an exact Goldstone boson from broken chiral symmetry in the UV 

• EW gauge bosons induce a positive potential via the mechanism of “vacuum alignment.”* 

✦ The physics is identical to EM mass splittings between pions in QCD. 

✦ These interactions do not trigger EWSB. Compute this LEC 
on the lattice

Dimensional analysis  Careful computation  
in field theory, Das (1967)

*That 𝛼>0 is proven: E. Witten, “Some Inequalities Among Hadron Masses,” PRL 51, 2351 (1983)
36QCD version: Das et al (1967), Phys. Rev. Lett., 18, 759–761



Lattice Pilot Study 
SU(4) single-rep simulation (1606.02695)
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The Higgs Potential
• The top quark induces a negative potential. If this effect is large enough, 

“vacuum misalignment” drives the formation of a Higgs VEV and triggers EWSB.

SM Top Loop Partial Compositeness

+ +…=

= lattice task = baryon 4-pt function ‣ Technically challenging, see 
1502.00390 and 1707.06033

‣ Factorization at large-N?
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Section 4: 
Baryons
Mostly highlights from unpublished preliminary work  
in conference proceedings - (1610.06465)
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Hyperons in SU(3) 
Warm-up for SU(4) baryons
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Baryons in a multirep theory

• Three sorts of baryons appear in our 
model 

‣ Fundamental: (qqqq)SU(4) 

‣ Sextet: (QQQQQQ)SO(6) 

‣ Mixed or “chimera”: (Qqq)SU(4)

q
q
q
q

q
q

Q

SU(4)

Q
Q
Q
Q
Q
Q

SO(6)
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Baryon masses in multirep SU(4) 
Goal: Qualitative understanding

• Tool: non-relativistic quark model 

• “Constituent” quark masses with “color hyperfine” interactions 

• NR quark models make quantitative predictions for the entire 
spectrum of multirep SU(4) baryons 

• More generally: Dashen, Jenkins, and Manohar used SU(2)×U(1) 
flavor symmetry to derive similar functions at large-N

mqqqq = 4mq +
C

m2

q

X

i<j

~Si · ~Sj = 4mq +
C

2m2

q

⇣
~S2

tot

� 3
⌘

mQqq = mQ + 2mq +
C

m2
q

✓
~S1 · ~S2 + 2

mq

mQ

~SQ · (~S1 + ~S2)

◆
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Exploratory results 
(1610.06465) — Single ensemble, no dynamical sextets

Sextets 
QQQQQQ

Fundamentals 
qqqq

“Chimeras” 
Qqq

Baryon  
mass

Heavy sextet 
fermions

Light  sextet 
fermions
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Exploratory results 
(1610.06465) — Single ensemble, no dynamical sextets

“QCD-like region” 
“Heavy” sextet fermion 
M𝛬 < M𝛴

Inverted region 
“Light” sextet fermion 
M𝛬 >M𝛴

44



Summary, Conclusions
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Summary 
Meson spectroscopy
• ChiPT describes the Goldstone system well 

• Symmetries break as expected (the EFT works!) 

• The system is QCD-like, since the EFT is a close cousin of ChiPT in QCD 

• Evidence exists for NLO communication between the two irreps 

• A qualitatively new phenomenon 

• An essential feature of any multirep theory 

• The vector mesons are heavy states in this theory and potential targets for collider 
searches  

• KSRF relations suggest that such resonances are broad yet perhaps narrower than 
the 𝜌(770) in QCD 

• Scaling from “large-N” helps explain the relative sizes between irreps
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Summary 
Higgs potential, Baryons
• The Higgs potential is generated via interactions with 

• EW gauge bosons: analogous to EM mass splittings among pions in QCD.  

• We computed the associated LEC in a single-rep simulation and plan to measure it on our 
multirep lattices 

• Top quark: baryon 4-point function, probably hard, although potentially tractable factorization at 
large-N 

• For baryons, exploratory work with partial quenching suggests that 

‣ In multirep SU(4), baryons are well described by a NR quark model 

‣ Depending on the fermion masses, either the 𝛴-like or the 𝛬-like state can be the lightest state 

‣ The chimera baryons can be the lightest baryons in the spectrum — good news for 
phenomenology? 

‣ How much of this story will survive in a fully dynamical multirep simulation? (In progress, but 
very preliminary)
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Take-home points
• You heard about preliminary results from simulations of 

SU(4) gauge theory with dynamical fermions in the 
fundamental and sextet representations 

• This theory is a close relative of Ferretti’s model of 
composite Higgs and partial compositeness 

• The lattice can augment work in phenomenology by 
computing LECs, masses, etc…  

• Meson spectroscopy is consistent with expectations 
from EFT
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Future directions
• Thermodynamics of multirep theories (in progress) 

• Do representations condense and break chiral symmetry at different scales? 

• What is the nature of the transitions?  

• Baryon spectroscopy on dynamical multirep lattices (in progress) 

• What is 𝛤T/MT for the top partner T? 

• Where does the top partner sit compared to the rest of the spectrum? 

• Higgs potential 

• EW gauge boson contribution: repeat measurement in the full multirep theory 

• Top quark contribution: probably hard on the lattice (baryon 4-point functions?), 
but large-N estimates may help
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Back-up slides
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Ferretti's Model 
Group theory details

• Overall: GF → HF = SU(3)diag x SU(2)L × SU(2)R × U(1)X  = 
Gcust. ⊃ GSM 

• The global symmetry group is GF = SU(5) × SU(3) × SU(3)’ 

• 𝜒SB for the sextets: SU(5) → SO(5) ⊃ SO(4) “≌”	SU(2)L 
× SU(2)R  

• 𝜒SB for the fundamentals: SU(3) × SU(3)’→ SU(3)diag x 
U(1)X

• The Higgs lives in the coset SU(5)/SO(5)
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Software: Multirep MILC
• Based on a branch of the MILCv7 code, focused on 

Wilson fermions 

• Dynamical code generation using Perl: Nc and 
representation(s) are fixed in code generation, allowing the 
C compiler to optimize matrix operations 

• Bells and whistles: clover term, nHYP smearing, 
Hasenbusch preconditioning, multi-level integrator, NDS 
action, … 

• We use all of the above in our simulations. The clover term 
cSW is set equal to unity (shown to work well with smearing)

Slide credit: Ethan Neil
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The NDS Action 
nHYP Dislocation Suppressing Action
• nHYP is a smearing scheme invented and optimized by Hasenfratz and 

Knechtli. It involves fat links V built from thin links U. 

• The usual gauge links U are “thin” links. The fat link V is “smeared” link 
— a sum of products of gauge links connecting points on the lattice. 

• Smearing provides a smoother background for fermion propagation. 
Smoothing is known to reduce lattice artifacts. 

• Dislocation suppression refers to taming large spikes in the fermion force 
during HMC evolution. 

• Enacted by extra marginal gauge terms 

• Creates a “repulsive potential” to cancel out the offending large spikes 
in the fermion force.
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Lattice Spectroscopy
• Two-point functions encode spectral information, as usual 

• The axial Ward identity yields the quark mass 

• Decay constants use “130 MeV” conventions (and its natural generalization)  

• Many possible ways to set the scale 

• Sommer parameters r0, r1 

• The flow scale t0 

• Mass of the 𝛺-baryon, decay constants F𝜋 or FK, etc… 

• Safe flow scales? 1 < t0 / a^2 < 3,  “QCD” analogy: 0.08 fm ≲ a ≲ 0.13 fm
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Decay Constants 
Normalization and Conventions
• Decay constants with Wilson fermions involve a rescaling factor 

which depends on the critical value of the hopping parameter 
𝜅critical. 

• For these ensembles, 𝜅~𝜅critical. 

• The Wilson normalization term does not vary much across the 
ensembles 

• Decay constants also involve a (perturbative) matching factor, Z 

• For these ensembles, the Z-factors were approximately unity 

FP~(Z-factor) x (Wilson-𝜅critical factor) x FP,raw
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ChiPT at NLO — MP2
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ChiPT at NLO — FP
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ChiPT at NLO — Chiral Logs
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Vectors: Empirical models 
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And similar for the vector decay constants… 
The parameters pi are unrelated among the four 
vector quantities



Modelling MV and FV
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